Survey of Engineering
Computer Science
Pinball Worksheet 3

Name \qquad

Date \qquad Team \qquad

1. Log on to Scratch http://scratch.mit.edu/
2. Select "Try it out."
3. Upload your file from last exercise.
4. Define Gravity
4.1. Click the Stage area (lower left pane) and create two global variables called Gravity and GravityAngle. All the Sprites will
 be able to see and access this variable.
4.2. In the Green Flag Event handler set Gravity to 0.1 and GravityAngle to 180.
4.3. Make an event handler for the letter " \mathbf{g} " that adds 0.01 to Gravity.
4.4. Make an event handler for the letter " \mathbf{t} " that sets gravity to 0 .
4.5. Test your event handlers to make sure they change the variables like you would expect.
4.6. Click on the Ball Sprite Icon in the lower left pane to get back to its code.
4.7. Make a user defined function (or Block) called Gravity.
4.7.1. Go to the More Blocks command group and Make a Block.
4.7.2. Name this block Gravity. You should see a new block somewhere in your code called Define Gravity.
4.7.3. Add a Gravity block to your forever loop.
4.8. Use vector addition to determine Gravity's effect on the ball.
4.8.1. You will use the Law of Cosines to calculate a new Speed: set Speed to sqrt(Speed ${ }^{2}+$ Gravity $^{2}-$ 2 * Speed ${ }^{*}$ Gravity* $\cos ($ direction)). Direction is a variable in the Motion group. This is complicated, so let's break it down into smaller steps.
4.8.2. Drag the following to the code space and start assembling them

4.8.3. Once all the correct variables are in the operators, start dragging the operator groups together covering up all the 10's. Order is important

Developed through a partnership between the University of Utah College of Engineering and Granite School District
\qquad
\qquad Team \qquad
4.8.4. The middle group drags to the right, and then everything goes into the sqrt function to finish the speed calculation.
4.8.5. We will use the Law of Sines and an If Then Else block to calculate how far we need to turn. If Speed is close to 0 (Speed < Gravity) the equation doesn't work well. In this case set newAngle to 180 (down). Otherwise (else), turn asin(Gravity * \sin (direction)/Speed) degrees.
4.8.6. Your define Gravity code should look like something like this:

4.9. Test your code. Make sure that you have called Gravity from your forever loop. Adjust gravity using the " g " and " t " keys and use the Speed and Direction controls you made earlier to see if gravity works as you expect it to.

Extra for experts:

- Make a function called Friction and move your code that implements friction into it.
- If you want a real challenge, define a variable called GravityAngle and modify the equations so that gravity can work in any direction.

5. Save your work.
5.1. Find the File menu just above the output pane.
5.2. Select Download to your computer.
5.3. Give the file a name and store it in your chosen location.
